skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vallejo, Carolina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Abstract We show that every finite group of order divisible by 2 or q , where q is a prime number, admits a $$\{2, q\}'$$ { 2 , q } ′ -degree nontrivial irreducible character with values in $${\mathbb{Q}}(e^{2 \pi i /q})$$ Q ( e 2 π i / q ) . We further characterize when such character can be chosen with only rational values in solvable groups. These results follow from more general considerations on groups admitting a $$\{p, q\}'$$ { p , q } ′ -degree nontrivial irreducible character with values in $${\mathbb{Q}}(e^{2 \pi i /p})$$ Q ( e 2 π i / p ) or $${\mathbb{Q}}(e^{ 2 \pi i/q})$$ Q ( e 2 π i / q ) , for any pair of primes p and q . Along the way, we completely describe simple alternating groups admitting a $$\{p, q\}'$$ { p , q } ′ -degree nontrivial irreducible character with rational values. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)